

LA-UR-14-27757

Approved for public release; distribution is unlimited.

Title: Actinide Studies with Ultracold Neutrons

Author(s): Broussard, Leah Jacklyn

Intended for: Fourth Joint Meeting of the Nuclear Physics Divisions of the American

Physical Society and The Physical Society of Japan, 2014-10-07/2014-10-11 (Waikoloa, Hawaii, United States)

Issued: 2014-10-17 (rev.1)

Actinide Studies with Ultracold Neutrons

Leah Broussard

Los Alamos National Laboratory

October 11, 2014

Effects of Fission on Surrounding Material

Typically 2 fragments emitted

- A \sim 100, E \sim 100 MeV, $\frac{v}{c}\sim$ 10%
- Range \sim 10 μ m

Effect on material

- Very energetic, heavy, charged particles
- How is energy deposited in material?
- Damage to the material?
- Near material surface: ejection of matter
- Differentiate between theoretical models

235 U fission fragments

Mass Number A

Why study nuclear material aging?

- Nuclear fuels
- Stockpile stewardship
- Lifetime of materials in space

Inducing Fission with Ultracold Neutrons

Experimental evidence

- Many previous measurements of sputtered atoms per fission
- Significant disagreement in yield, distribution!
- Key to differentiating models

New Technique for understanding sputtering

- Induce fission using Ultracold Neutrons
- Excellent control of neutron energy
- Very sensitive probe of fission as function of depth

LANL: Unique Position for work

- LANSCE: one of world's brightest sources of UCN
- Expertise in fabrication and analysis of actinide targets

Ultracold Neutrons

Class	Energy	Source			
Fast	> 1 MeV	Fission reactions / Spallation			
Slow	eV – keV	Moderation			
Thermal	0.025 ev	Thermal equilibrium			
Cold	μ eV – meV	Cold moderation			
Ultracold	≤ 300 neV	Downscattering			

How cold is Ultracold?

- Temperature < 4 mK
- Velocity < 8 m/s
- Usain Bolt \sim 12 m/s

UCN can be bottled

- Gravitational (V = mgh): 100 neV / meter
- Magnetic ($V=-ec{\mu}\cdotec{B}$): 60 neV / Tesla

$$\bullet \ \, \mathsf{Material} \, \left(V = \tfrac{2\pi \hbar^2 N b}{m} \right) \left\{ \begin{array}{ll} {}^{58}\mathsf{Ni} : & 335 \,\, \mathsf{neV} \\ \mathsf{DLC} : & 250 \,\, \mathsf{neV} \\ \mathsf{BeO} : & 250 \,\, \mathsf{neV} \\ \mathsf{Cu} : & 170 \,\, \mathsf{neV} \end{array} \right.$$

Predictions for UCN-induced Fission in Uranium

Uncharted energy regime

- 3 orders of magnitude lower than ever explored
- Very high theoretical cross section $\sigma \sim \frac{1}{V}$
- 300 neV UCN: 2.16×10^5 barn

Control depth of fission event

Range of UCN in uranium (μm)								
	DU	NatU	SEU	LEU	HEU	VHEU		
% ²³⁵ U	0.2	0.7	2	5	20	100		
200 neV	118	66	312	13	4	8.0		
300 neV	144	81	38	17	4.5	0.9		
400 neV	191	101	45	20	5	1		

Ultracold Neutron Facility at LANSCE

UCN Source

- ullet 800 MeV proton beam + W target o spallation neutrons
- single scatter in SD_2 : $CN \rightarrow UCN + phonon$
- High density at shield wall: 50 UCN/cc
- Pulsed beam: Low background

Experimental Area

- UCN bounce along guides. through AI window, into detection chamber
- 6 T magnet = near 100% polarization

Fission Rates

Detection chamber

• Cylindrical ion chamber

²³⁸U

- 2.25 cm diameter, 1 mm thick disk of DU (\sim 0.2% 235 U)
- Rate: $(1.3 \pm 0.8) \times 10^{-4}$ fission/UCN

²³⁵U

- 2.2 cm diameter, 1 mm thick disk of HEU (> 80% ²³⁵U)
- Rate: $(1.90 \pm 0.02) \times 10^{-2}$ fission/UCN

Varying UCN Energy

Simulated UCN energy spectrum after magnet

Two primary methods for control

- Magnetic field (60 neV/T)
- Gravity (100 neV/m)

Gravity scan

- Adjust height of ion chamber
- Sensitive to geometry, guide quality
- Al window: 50 neV barrier
- $^3\text{He} + \text{n} \rightarrow \text{p} + \text{t}$

UCN-energy dependence of fission rates

DU sample

- Electropolished, 2.25 cm diameter, 1 mm thick disk
- Measured fission rate decreases with UCN energy

²³⁵U sample

- Thin sample: 30 μg heavily oxidized ²³⁵U on tape
- Measured fission rate increases as UCN energy increases

Sputtering from UCN-induced fission

Exposure to Silicon wafer

- 1" diameter, 475 μ m thick, polished wafer
- Exposed to 2.2 cm diameter, 1 mm thick electropolished DU disk
- 3×10^7 total UCN in chamber
- 0.18 μ g 238 U collected on wafer
- Analyze with scanning probe microscopy

Exposure to Ni cylindrical foil

- 0.005" Ni foil, 1.15" diameter, 2.835" height
- ullet UCN bottle: Ni material potential \sim 300 neV
- Exposed to DU disk and 30 μg ²³⁵U thin sample

Sputtering on Nickel foil

Expose to DU disk and HEU film

- Each sample exposed to $\sim 10^8~\text{UCN}$
- Determine yield from α decay rate in ion chamber
- Can distinguish α 's from ²³⁸U, ²³⁵U decay

Angular distribution

- · Mask vertical sections of foil
- · Results from DU foil
- Distribution \sim isotropic

Low Background Analysis Chamber

Design Goals

- Amount of sputtered material very low
- Veto signals originating outside region of interest
- Background < 1 count/hour
- Undergraduate Student Project: Jose Ortiz, UW

Characterize Ejected Material In-Situ

Key questions:

- How much comes off?
- Size distribution vs. depth/surface quality?
- · Kinetics vs. depth?
- Effect of surface preparation?

Summary

First observation of UCN-induced fission

- Previously no fission data at these energies
- Initial characterizations of UCN energy dependence, material thickness

First observation of sputtering from UCN-induced fission

Proof of principle demonstrated

2014 Accelerator Cycle

- New beamline for parasitic running
- Sample handling to eliminate contamination
- Well-characterized samples of different geometries

